26
THE POPULAR SCIENCE MONTHLY
shaft, or, in other words, the engine shaft must push downwards on the bearing a and pull upwards on the bearing b, so that the gyrostatic reaction of the fly-wheel causes the outer wheels OO of the automobile to be pushed against the ground excessively as the automobile turns round a curve.
Figs. 11 and 12 represent the case in which the top of the spinning fly-wheel is moving forwards, and Figs. 13 and 14 represent the case in which the top of the spinning fly-wheel is moving backwards. In Figs. 13 and 14 the gyrostatic action of the fly-wheel causes the inner wheels II of the automobile to be forced against the ground excessively, as may be seen by studying the vector diagrams in Figs. 13 and 14.

| Fig. 15. | Fig. 16. |
Figs. 15 and 16 represent the case in which the fly-wheel shaft is parallel to the length of the car. In Fig. 15 the car is represented as turning to the right, the arrow S in the vector diagram represents the spin-momentum of the fly-wheel at a given instant, S' represents the spin-momentum at a later instant, ΔS represents the increment of spin-momentum, and T represents the torque which must act upon the fly-wheel shaft. To produce the torque T, the bearing a must push upwards upon the engine shaft and the bearing b must push downwards on the engine shaft, or, in other words, the engine shaft must push downwards on bearing a and upwards on bearing b. Therefore the